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Epigenetics

Innate immune memory: towards a better understanding of host
defense mechanisms
Jessica Quintin, Shih-Chin Cheng, Jos WM van der Meer, Mihai G Netea &

Highlights

» Organisms lacking an adaptive immune system can mount resistance to secondary infections.
* NK cells and monocytes have adaptive (memory) characteristics.

» Trained immunity is the term proposed for innate immune memory responses.

 Epigenetic reprogramming is a central mechanism mediating innate immune memory.

Innate immunity is classically defined as unable to build up immunological memory. Recently however, the
assumption of the lack of immunological memory within innate immune responses has been reconsidered.
Plants and invertebrates lacking adaptive immune system can be protected against secondary infections. It
has been shown that mammals can build cross-protection to secondary infections independently of T-
lymphocytes and B-lymphocytes. Moreover, recent studies have demonstrated that innate immune cells
such as NK cells and monocytes can display adaptive characteristics, a novel concept for which the term
trained immunity has been proposed. Several mechanisms are involved in mediating innate immune
memory, among which epigenetic histone modifications and modulation of recognition receptors on the
surface of innate immune cells are likely to play a central role.



Epigenetics

Epigenetics of Host—Pathogen Interactions: The Road Ahead and the Road
Behind

Elena Gémez-Diaz [E], Mireia Jorda, Miguel Angel Peinado, Ana Rivero

Published: November 29, 2012 « DOI: 10.1371/journal.ppat. 1003007
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Epigenetics

Epigenetics of Host—Pathogen Interactions: The Road Ahead and the Road
Behind

Elena Gémez-Diaz [E], Mireia Jorda, Miguel Angel Peinado, Ana Rivero

Published: November 29, 2012 « DOI: 10.1371/journal.ppat. 1003007

examples on infection-induced host gene reprogramming [32]. A diverse array of bacterial
effectors has been identified that either mimic or inhibit the host cellular machinery, thus
facilitating the pathogen's life-cycle. MAPK (mitogen-activated protein kinase), Interferon (IFN),
and transcription factor NF-kB signaling pathways are common targets of bacterial-induced
post-translational modifications, acetylation, ubiquitylation, and phosphorylation on histones
and chromatin-associated proteins [35]. Within the alveolar macrophages, Mycobacterium
tuberculosis, for example, inhibits interferon-y-induced expression of several immune genes
through histone acetylation [36], which explains the persistence of long-term chronic
tuberculosis infections in some patients. This mechanism is not restricted to bacteria but
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Let’s Anthropomorphize

What might scare marine invert!?




Today: Physiological Response to things that are bad

It is important the think about the big picture.

What else is going on with the critter...

resource allocation

Where are these resources coming from!?



Today: Physiological Response to things that are bad

It is important the think about the big picture.
What else is going on with the critter...
really big picture -

What has the population experienced.



Defense Systems

® Anatomic Features

® |mmunity
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Anatomic Features

Key reference: Arnoktt, 5. A, MNeil, D. M. and Ansell, A. D. (1999). Escape trajectories of the
brown shrimp Crangon crangon, and a theoretical consideration of initial escape angles from
predators. J. Exp. Biof. 202, 193-209,
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What is the overarching fear in those three
examples!?
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What is the overarching fear in those three
examples!?
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What is the overarching fear in those three
examples!?
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Defense Systems

® Anatomic Features

® |mmunity
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Immune System

® Defense against pathogens

® Removal of “worn-out” cells and tissue
debris (wound healing and tissue repair)

® |D and destruction of abnormal cells that
originate in the body.
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Immune System

® Defense against pathogens

® Removal of “worn-out” cells and tissue
debris (wound healing and tissue repair)

® |D and destruction of abnormal cells that
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Immune response and mechanical stress susceptibility in diseased
oysters, Crassostrea virginica

Steven B. Roberts - Inke Sunila - Gary H. Wikfors

19



Immune response and mechanical stress susceptibility in diseased
oysters, Crassostrea virginica

Steven B. Roberts - Inke Sunila - Gary H. Wikfors

» Experimental Design

— 1. Compare C. virginica exposed to P. marinus with
ones without the parasite

— 2. Evaluate effects of physical stress
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Immune response and mechanical stress susceptibility in diseased

oysters, Crassostrea virginica

Steven B. Roberts - Inke Sunila - Gary H. Wikfors

Table 2 Hematology of oysters, C. virginica, from two cohorts,
infected with P. marinus (n = 17) and uninfected (n = 19), deter-
mined by flow cytometry (mean + SE)

P. marinus Uninfected
infected
Granular cells x 10° ml™" 0.214 £ 0.0556 0.0614 =+ 0.014
Agranular cells x 10% m]™! 2.27 + 0.458 0.586 + 0.065
Granular cell diameter in um 8.52 4+ 0.30 11.4 £ 0.20
Agranular cell diameter in um 5.31 £ 0.10 6.29 + 0.31

No effect of mechanical stress was observed; therefore, data from
stressed and unstressed were combined
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Fig. 2 Percentage of phagocytic hemocytes in P. marinus-infected
(n = 17) and uninfected oysters (n = 19). A significant difference
was observed after mechanical stress only in uninfected oysters

(ANOVA p < 0.05) y



Immune response and mechanical stress susceptibility in diseased
oysters, Crassostrea virginica

Steven B. Roberts - Inke Sunila - Gary H. Wikfors
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Pathogens
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Pathogens

® Disease producing power known as

® Bacteria - release enzymes or toxins

® |nternal parasites (larger; protozoa, fungi) -
use resources, damage tissue

® Virus - not self sustaining; lack ability to for
energy production and protein synthesis
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Ecology of thraustochytrids and labyrinthulids 129

Protists
Fungi-like
Thraustochytrids

Fig. 1. Cells of a thraustochytrid growing on a nutrient agar medium. Bar represents 50 pm.
Fig. 2. Ectoplasmic net elements of a thraustochytrid cell. Scale bar = 20 pm.

Fig. 3. Leaves of the scagrass Thalassia hemprichii Escherson showing necrosis, presumably caused by Labyrinthu- s
la sp. Scale bar =1 cm. P

Fig. 4. Epifluorescence micrograph of cells of Labyrinthula within the tissue of the seagrass Thalassia hemprichii Es- |
cherson, Yabclled with Calcof%::)r. Scale bar = 20 pm.

Fig. 5. Cells of thraustochytrids in phytoplankton detritus, stained using the acriflavine direct detection (AfDD)
technique. Scale bar = 10 pm.

Ecology of the marine protists, the Labyrinthulomycetes
(Thraustochytrids and Labyrinthulids)

Seshagiri Raghukumar
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Fungi - QPX
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, Colleen Burge - Oct 14, 2011 - Limited
- arrows point to sea grass Labyrinthula, | think (40X), don't ask me about tt

More photos from Colleen Burge



Colleen Burge - Sep 28, 2011 - Mobile - Limited

Really sad sea fan, really happy Laby




Virus - Nodavirus

INSTITUTE OF MARINE RESEARCH

HAVFORSENINGSINSTITUTTET

Development of diagnostic and management techniques to
select cod broodstocks and hatchery stocks free from
nodavirus

Northeastern Regional
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Phage
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Abalone

Caused by a bacteria..



Immune Response

® [nnate Immunity - non-specific

® Acquired Immunity- adaptive; selectively
targets
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Chemico-physical Barrier

Y

anti-microbial peptides

beneficial microbial
communities 34



from the beginning...
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How do organisms distinguish self from
non-self?
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This is a picture of two A elegantissima or A. sola fighting with acrorhagia. Taken at San Simeon, CA by Dave Cowles




How do organisms distinguish self from
non-self?

pattern recognitions proteins (PRPs)
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PRPs

| Fungus //- ‘ Gram™* bacteria ‘
GNBP-3 Q T\ .

L ‘ Gram- bacteria ‘
PGRP-SA/GNEP-1
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| Toll

WA mr M If i

Toll-like Receptors
Peptidoglycan recognition proteins
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PRPs - Toll-like Receptors

Virus?
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That’s how the immune system
knows bad things are there...
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Innate Immunity

Chemico-physical barrier (shell, mucus)

/ CELLS:

Hemolymph

\ Sl Hyalinocyte

SERUM:
soluble lectins
hydrolytic enzymes
antimicrobial peptides

chemokinesis

chemotaxis

binding and internalization
oxidative burst activation
lysosomal enzymes
antimicrobial peptides

Laura Canesi, Gabriella Gallo, Miriam Gaviall, and Cara Pruzzo
Bacteria~hemocyte Interactions and Phagocytosis in Marine

Bivalves. 2001, Microscopy Research And lechnique 5/:469-4/6
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BUT WAIT - How do these immune cells
know where to go!
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Innate Immunity

Chemico-physical barrier (shell, mucus)
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Hemolymph

\ Sl Hyalinocyte

SERUM:
soluble lectins
hydrolytic enzymes
antimicrobial peptides

chemokinesis

chemotaxis

binding and internalization
oxidative burst activation
lysosomal enzymes
antimicrobial peptides

Laura Canesi, Gabriella Gallo, Miriam Gaviall, and Cara Pruzzo
Bacteria~hemocyte Interactions and Phagocytosis in Marine

Bivalves. 2001, Microscopy Research And lechnique 5/:469-4/6

46



-

Opsonization:
E'r‘lhanoemept of
agocytosis
y coau’:\tg with C3b

Complement System

membrane
C5

b C8’07 Cs C9

Cytolysis:

Loss of cellular
contents through
transmembrane
channel formed

by membrane attack
complex C5-C9

Inflammation:

Increase of blood
vessel permeability
and chemotactic
attraction of

phagocytes
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Complement System - Invertebrates

Microbe

Phagocvie

Complement systems in invertebrates. The ancient alternative and lectin pathways

L. Courtney Smith® , Kaoru Azumi” and Masaru Nonaka®
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Immune Response

® |nnate Immunity - non-specific

® Acquired Immunity
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Today: Physiological Response to things that are bad

It is important the think about the big picture.
What else is going on with the critter...
really big picture -

What has the population experienced.
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GENETIC DRIFT




Iwo part story

w .
.
bl Ll
B!
t -

halh




o p Hi_lq :_-"..-! 1 1 i

NATURAL SELECTION

flickr | cpurrinl

Roxannna Smolowitz
Rick Karney
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Mechanisms

They are different,
but how / why?






Schematic

Parasite

Resistant
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Apoptosis — BCL-X

* Resistant oyster strains could downregulate
apoptosis suppression

* Allowing for increased apoptosis

* Decreasing number of cells available for
Perkinsus proliferation



Immune response and mechanical stress susceptibility in diseased

oysters, Crassostrea virginica

Steven B. Roberts - Inke Sunila - Gary H. Wikfors
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Table 2 Hematology of oysters, C. virginica, from two cohorts,
infected with P. marinus (n = 17) and uninfected (n = 19), deter-
mined by flow cytometry (mean + SE)

P. marinus Uninfected
infected

Granular cells x 10% m]™’
Agranular cells x 10% m]™!
Granular cell diameter in um
Agranular cell diameter in um

0.214 + 0.0556 0.0614 + 0.014
2.27 + 0.458 0.586 =+ 0.065
8.52 + 0.30 11.4 + 0.20
531 £ 0.10 6.29 + 0.31

No effect of mechanical stress was observed; therefore, data from

stressed and unstressed were combined

infected




Schematic

Epigenetic?
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Summary - Oyster

® Offspring of survivors of heavy disease
pressure are more tolerant to disease

® Mechanisms involved in host responses to P.
marinus include proteases and apoptosis



General Observation

on selection
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Abalone




NATURAL SELECTION
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Increased Resistance

Better survival AND less pathogen load

How!



Differences!?



Virus?
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Gene Expression Levels
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