Get familiarized with metadata - Acacia drepanolobium Surveys

Data

acacia <- read.csv("https://www.esapubs.org/archive/ecol/E095/064/ACACIA_DREPANOLOBIUM_SURVEY.txt", sep="\t", na.strings = "dead")

Basics

library(ggplot2)
ggplot(acacia, aes(x = CIRC, y = HEIGHT)) +
  geom_point()
ggplot(acacia, aes(x = CIRC, y = HEIGHT)) +
  geom_point(size = 3, color = "blue", alpha = 0.5)
ggplot(acacia, aes(x = CIRC, y = HEIGHT)) +
  geom_point(size = 3, color = "blue", alpha = 0.5) +
  scale_y_log10() +
  scale_x_log10()
ggplot(acacia, aes(x = CIRC, y = HEIGHT)) +
  geom_point(size = 3, color = "blue", alpha = 0.5) +
  labs(x = "Circumference [cm]", y = "Height [m]",
       title = "Acacia Survey at UHURU")

Do Exercise 1 - Mass vs Metabolism.

Grouping

ggplot(acacia, aes(x = CIRC, y = HEIGHT, color = TREATMENT)) +
  geom_point(size = 3, alpha = 0.5)
ggplot(acacia, aes(x = CIRC, y = HEIGHT)) +
  geom_point(size = 3, alpha = 0.5) +
  facet_wrap(~TREATMENT)

Do Tasks 1-4 in Exercise 2 - Adult vs Newborn Size.

Layers

ggplot(acacia, aes(x = CIRC, y = HEIGHT)) +
  geom_point() +
  geom_smooth(method = "lm")
ggplot(acacia, aes(x = CIRC, y = HEIGHT, color = TREATMENT)) +
  geom_point() +
  geom_smooth(method = "lm")
trees <- read.csv("https://www.esapubs.org/archive/ecol/E095/064/TREE_SURVEYS.txt",
                  sep="\t", na.strings = c("dead", "missing", "MISSING", "NA"))
ggplot() +
  geom_point(data = trees, aes(x = CIRC, y = HEIGHT), color = "gray") +
  geom_point(data = acacia, aes(x = CIRC, y = HEIGHT), color = "red") +
  labs(x = "Circumference [cm]", y = "Height [m]")
ggplot(mapping = aes(x = CIRC, y = HEIGHT)) +
  geom_point(data = trees, color = "gray") +
  geom_point(data = acacia, color = "red") +
  labs(x = "Circumference [cm]", y = "Height [m]")

Do Task 5 in Exercise 2 - Adult vs Newborn Size.

Statistical transformations

ggplot(acacia, aes(x = TREATMENT)) +
  geom_bar()
ggplot(acacia, aes(x = CIRC)) +
  geom_histogram()
ggplot(acacia, aes(x = CIRC)) +
  geom_histogram(bins = 15) +
  scale_x_log10() +
  facet_wrap(~TREATMENT) +
  labs(x = "Circumference", y = "Number of Individuals")

Additional information

Saving plots as new files

ggsave("acacia_by_treatment.jpg")
ggsave("figures/acacia_by_treatment.pdf", height = 5, width = 5)