library(DT)datatable( df,options =list(pageLength =10,autoWidth =TRUE ),filter ='top', # column filters at the toprownames =FALSE)
Source Code
---title: "Functional annotation summary for WGCNA modules"description: "GOing with more"categories: [e5, barnacle, coral]#citation: date: 11-13-2025image: http://gannet.fish.washington.edu/seashell/snaps/2025-11-13_05-28-34.png # finding a good imageauthor: - name: Steven Roberts url: orcid: 0000-0001-8302-1138 affiliation: Professor, UW - School of Aquatic and Fishery Sciences affiliation-url: https://robertslab.info #url: # self-defineddraft: false # setting this to `true` will prevent your post from appearing on your listing page until you're ready!format: html: code-fold: FALSE code-tools: true code-copy: true highlight-style: github code-overflow: wrap#runtime: shiny---Implementation- **Script**: `19-annotate-wgcna-modules.py` joins `wgcna_ortholog_module_assignments.csv` with `ortholog_groups_annotated.csv` on `group_id` (OG_xxxxx)- **Summarization**: Counts and ranks GO terms (BP/CC/MF), GO Slim pathways, and protein functions per module- **Output**: 7 files in `M-multi-species/output/18-ortholog-wgcna/`: - `wgcna_module_annotation_summary.txt` - detailed report with top 10 terms per category for all 15 modules - `wgcna_module_overview.csv` - per-module statistics (size, coverage, dominant terms) - 5 CSV matrices showing term distributions across modules (GO BP/CC/MF, GO Slim, proteins)---All output:<https://github.com/urol-e5/timeseries_molecular/tree/main/M-multi-species/output/18-ortholog-wgcna>```{r}url <-"https://raw.githubusercontent.com/urol-e5/timeseries_molecular/refs/heads/main/M-multi-species/output/18-ortholog-wgcna/wgcna_module_go_bp_summary.csv"df <-read.csv(url, stringsAsFactors =FALSE, check.names =FALSE)head(df)``````{r}library(DT)datatable( df,options =list(pageLength =51,autoWidth =TRUE ),filter ='top', # column filters at the toprownames =FALSE)```