Finding the predominant

For a the ceabigr data lets ID which isoform is predominant, such that we can find out how treatment and/or methylation might influence this.

We start with the transcript expression table.

  • https://github.com/epigeneticstoocean/2018_L18-adult-methylation/blob/main/data/whole_tx_table.csv
t_id chr strand start end t_name num_exons length gene_id gene_name cov.S12M FPKM.S12M cov.S13M FPKM.S13M cov.S16F FPKM.S16F cov.S19F FPKM.S19F cov.S22F FPKM.S22F cov.S23M FPKM.S23M cov.S29F FPKM.S29F cov.S31M FPKM.S31M cov.S35F FPKM.S35F cov.S36F FPKM.S36F cov.S39F FPKM.S39F cov.S3F FPKM.S3F cov.S41F FPKM.S41F cov.S44F FPKM.S44F cov.S48M FPKM.S48M cov.S50F FPKM.S50F cov.S52F FPKM.S52F cov.S53F FPKM.S53F cov.S54F FPKM.S54F cov.S59M FPKM.S59M cov.S64M FPKM.S64M cov.S6M FPKM.S6M cov.S76F FPKM.S76F cov.S77F FPKM.S77F cov.S7M FPKM.S7M cov.S9M FPKM.S9M
1 NC_007175.2 + 1 1623 gene-COX1 1 1623 gene-COX1 COX1 197.261856 230.708456 38.658657 63.109 5144.539062 1882.768525 8613.396484 3234.683313 8851.949219 3011.082644 99.887238 157.223424 3652.243896 2097.983334 50.569931 85.725339 4143.192383 2031.465213 5815.194336 2720.424882 6334.129883 2424.161901 4264.319336 1729.175357 5067.318359 2416.769825 9989.254883 3956.071235 101.027107 75.18694 5948.057129 2672.94828 6176.420898 3143.717701 5888.288574 2700.855757 3855.770508 2012.004551 3341.584717 2103.869062 1460.471313 1161.543557 107.976585 110.668782 5490.592285 1914.960388 8571.107422 2570.933145 189.353043 239.215973 98.109673 110.63652
2 NC_007175.2 + 1710 8997 rna-NC_007175.2:1710..8997 2 1469 . . 2242.554199 2622.788958 96.919327 158.217649 109415.523438 40043.257756 234398.78125 88026.346834 170861.4375 58120.296015 882.683533 1389.351931 84232.40625 48386.194771 137.82959 233.646518 142036.0625 69642.269357 159205.9375 74478.644866 166901.03125 63875.406514 228253.34375 92556.402562 120283.171875 57366.977889 129583.375 51319.249367 391.246521 291.175602 145652.796875 65453.707719 64273.429688 32714.337634 125864.453125 57731.839833 105498.757812 55050.989262 78691.234375 49544.173635 104203.140625 82874.949689 475.213135 487.061698 237007.40625 82661.354364 238397.8125 71508.24364 2060.264404 2602.800279 628.857788 709.151659
3 NC_007175.2 + 2645 3429 gene-COX3 1 785 gene-COX3 COX3 145.308258 169.945901 44.127384 72.036519 3372.623047 1234.292994 2897.380859 1088.085233 5521.629883 1878.239865 117.998726 185.731071 1978.724854 1136.652394 48.717201 82.58462 2143.769531 1051.120205 3527.251953 1650.095152 2362.450928 904.143685 2339.378418 948.614583 2176.965332 1038.265953 6731.983887 2666.085521 104.224213 77.566307 3073.633057 1381.23458 3290.355225 1674.747906 2573.182129 1180.273976 1955.515747 1020.420322 2407.568115 1515.810162 1211.793579 963.764924 90.784721 93.048271 2992.1604 1043.579334 5468.978027 1640.438765 191.13121 241.46239 91.805099 103.526965
4 NC_007175.2 + 3430 3495 rna-NC_007175.2:3430..3495 1 66 . . 64.439392 75.365369 33.803032 55.18235 220.757568 80.791573 191.015152 71.734016 481.545441 163.802693 52.378788 82.44469 300.863647 172.827154 30.969696 52.499334 344.636353 168.980027 304.424255 142.413696 302.984863 115.956631 242.969696 98.523862 249.303024 118.900764 339.5 134.45309 46.045456 34.268198 280.787872 126.180943 217.060608 110.481019 305.757568 140.245689 317.454559 165.653017 227.454544 143.205879 135.15152 107.488847 51.439392 52.721938 533.909119 186.212117 780.348511 234.068219 100.803032 127.34781 40.348484 45.500262
5 NC_007175.2 + 3499 3567 rna-NC_007175.2:3499..3567 1 69 . . 72.623192 84.936768 59.855072 97.711458 249.289856 91.233654 177.043472 66.487078 486.405823 165.456002 53.347828 83.969968 374.376801 215.055815 27.52174 46.654414 410.811584 201.426669 332.144928 155.381794 353.159424 135.159152 268.478271 108.867553 306.753632 146.300838 273.289856 108.23171 63.13044 46.983277 242.08696 108.78946 203.492752 103.575157 315.144928 144.551508 378.652161 197.586934 198.08696 124.715984 194.594208 154.764867 82.333336 84.386166 691.956543 241.334505 921.637695 276.448396 115.101448 145.411473 55.260868 62.316691

reading it in

tx_exp <- read.csv("https://raw.githubusercontent.com/epigeneticstoocean/2018_L18-adult-methylation/main/data/whole_tx_table.csv")

taking the entire data set

tx_exp %>%
  select(starts_with(c("gene_name", "t_name", "FPKM"))) %>%
  pivot_longer(cols = c(3:28)) %>%
  group_by(gene_name, t_name) %>%
  summarise(Predom_exp = mean(value)) %>%
  group_by(gene_name) %>%
  slice(which.max(Predom_exp))

warning message

`summarise()` has grouped output by 'gene_name'. You can override using the `.groups` argument.

https://raw.githubusercontent.com/sr320/ceabigr/main/output/42-predominant-isoform/predom_iso-all.txt


next up will do this for each and every comparison, join, and see if the predominant isoform changes.

Written on September 14, 2022